
A Novel Bug Report Extraction Approach

Tao Lin1(✉), Jianhua Gao1, Xue Fu1, and Yan Lin2

1 Department of Computer Science and Technology, Shanghai Normal University,
Shanghai 200234, China

l.t@acm.org, jhgao@shnu.edu.cn, fuxuee@hotmail.com
2 Department of Information Systems and Operations Management,

The University of Auckland, Auckland 92019, New Zealand
ylin688@aucklanduni.ac.nz

Abstract. There are more and more bug reports in software. Software companies
and developers invest a large number of resources into the dramatic accumulation
of reports. We introduce Bayes classifier into bug reports compression, which is
the first effort in the literature. For this purpose, the vector space model as well
as some conventional text mining values, such as tf-idf and chi-squared test, are
designed to collect features for bug reports. The experiment proves that bug
reports extraction by using Bayes classifier is outperformance to the method based
on SVM through the evaluation of ROC and F-score.

Keywords: Bug report · Naïve Bayes classifier · Bug extraction · Tf-idf · Text
mining

1 Introduction

The past decade witnessed a significant enhancement of software engineering. However,
developers are increasingly bewildered by a great number of bug reports accumulated
rapidly day by day. Admittedly, there are some excellent code management integrated
development environments, such as Eclipse, and WingIDE. Besides some state of art
tools can assist developers planning software projects, such as Microsoft Project, Proj‐
ectLibre and Openproj. On the other hand, it is obvious to note that there is little or no
research on how to extract bug report to help developers as Table 1 shows.

Admittedly, there are many researchers have studied variety of documents summa‐
rization based on distinct methods. Goyal et al. investigated context-based extraction
for general documents for improving traditional ways taking no consideration on contest
[1]. There are a graph-based approach for documents similarity, and summarization
introduced by Mills et al. [2].

As noted above, what is our motivation to research to extract bug report? Previously,
there is little attention being paid on management of bug reports. Take waterfall model,
one of primitive and key model in software engineering. The waterfall model divide a
software entire life cycle into five main process, namely communication, planning,
modeling, construction and deployment, of which construction chiefly focus on code
and test. While test are concentration on unit testing, integration testing, system testing,

© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015 Workshops, LNCS 9532, pp. 771–780, 2015.
DOI: 10.1007/978-3-319-27161-3_70

and acceptance testing. As far as we are concerned, the whole software engineering pay
little attention on bug reports management. There is a possible reason for maintenance
being arduous is the lack of testing. To be precise, the short board on bug reports
management in software engineering.

Table 1. Some tools to insist developers in variety of aspects in software engineering

Aspects of software engineering Assist tools

Code management Eclipse, WingIDE

Planning project Microsoft Project, ProjectLibre,
Openproj

Bug reports extraction ?

Yet bug reports are increasingly stand a significant role in software engineering, in terms
of assistance of software reuse, update, upgrade, etc. Bertram and Greenberg suggested
that bug reports should be taken consideration on software team development [3]. Some
researchers conducted investigation on which bug reports are more critical to the entire
project, by this making determination to arrange the sequence of fixing bugs [4].

While there is no denying that software code has essential position in a project, it is
not too much usefulness in future after the project. In contrast, bug reports can influence
the future software development fundamentally, for example as reference and review.
None the less, there are some side effects in modern software development on bug
reports, mainly because there are too many reports to archive, even the project partici‐
pants can easily forget and ignore some important and major bug reports, let alone other
managers not involve in the software project to arrange and trim the reports. Although
some software companies demand that the developers summarize the bug reports just
after fixing the bug. This is not an accept method for the following two reasons. To be
admitted, most developers are good at fixing bugs, there are few developers can realize
which bug reports are important in the future. The second reason is that developers do
not have passion and responsibility to summary bug reports, due to company not always
praising the task related to bug reports extraction.

Fig. 1. Four contributions in our work

772 T. Lin et al.

Therefore, it is urgent to research automatic archive methods on bug reports. It is
wise to apply pattern reorganization approach to the area.

This paper makes four contribution as following Fig. 1.
According to our contributions, this paper mainly divided four sections:
In the first section, we briefly explain some core theory about naïve Bayes classier,

and why this is optimal method to apply in the circumstance of bug reports.
In the second section, though we mainly focus on extractive approach, it is useful to

process original bug report by abstractive approach, to be precise, we use a method of
normalization of thesaurus.

In the third section, we want present the features in our classier, which is based on
vector space model.

At last, we give an experiment and compute ROC curve and related evaluation
values, such as precision, recall, F-score.

Though there are some work for document mining [5] and bug reports summarization
based on support vector machine previously. This research maybe is the first time to
extract bug reports by using Bayer classifier in the literature.

2 The Reason to Choose Naive Bayes Classifier

In machine learning, there are already a large number of classifiers, for instance, support
vector machine and Logistic regression. In previous research, Rastkar et al. apply
support vector machine methods to summary bug reports [6]. To be admitted, support
vector machine method is an effective approach in many areas, such as geophysics
analysis and face recognition. On the other hand, it is not a judicious and advisability
way in bug report analysis for the following reasons. It is necessary to compute a great
number of ‘vectors’ (word weight) in bug reports, by this, it is easily to depend on a
tendency using a very high level vectors. Though it maybe increases the accuracy in
training set, there is a marked plunge rate in test set. On the contrary to that, naïve Bayes
classifier can avoid the problem of support vector machine by statistical method.

Therefore, how can we use naïve Bayes classier in bug report? Suppose the bug
reports can be represented as . The attribute of bug reports, if
have m attributes, can be noted as , besides the important and
possessing profound historical significance bug reports are a subset of ai. Therefore, the
extraction of bug reports is a problem of posterior probability. By this we mean that
according to Bayes formula, bug reports ai is part of Ci, if and only if

(1)

 is the priori probability of one specific bug report?
One of significant rational to select naïve Bayes classifier is that it is simple and

convenience to avoid the terminology of involving in specific software projects bug
reports, in other words, naïve Bayes classifier can be generalized to more software
projects.

A Novel Bug Report Extraction Approach 773

3 Abstract Thesaurus

It is known to us all that one of inconvenience problems on natural language is that
English like most languages in the world being ambiguity. In this paper, for a better
result, firstly, we intend to eliminate the ambiguity by merge different thesaurus into
one. For the best consequence, we try to setup a merge Table 2.

Table 2. Part of merge table to normalization of thesaurus

Core word Alternative word

Problem Difficulty, drawback, issue

Fix Tackle, arrange, solve

Good Fine, ok, not bad

Suggestion Proposal, proposition, submission, idea, recommendation

Agreement Contract, arrangement, promise

4 Bug Reports Features

One of the major task in this work is classification process, which includes word
segmentation, abstract thesaurus, feature selection, and vector space model as following
graph (Fig. 2).

In this section, we introduce vector space model firstly, then what we intend to
emphasize is feature selection, which is based on text mining methods, but maybe is the
first time use in bug reports extraction.

4.1 Vector Space Model

There are a large number of text mining methods in the literature, such as latent semantic
analysis, probabilistic latent semantic analysis, latent dirichlet allocation, and the corre‐
lated topic model [7]. None the less, it is vector space model suggested by Salton et al.,
one of the most popular and widely used, which is possible and optimal for preprocessing
of bug reports [8].

In vector space model, bug reports can be presented as vector. Every bug report can
be regarded as a two-valued feature vectors, as follows,

(2)

 is the feature item, is the weight of corresponding , and n is the length feature space.
In our work, the length feature space in bug reports is definite. Therefore, for the simpli‐
fication of related work, the above formula can be simplified as

(3)

774 T. Lin et al.

By this, it is convenient to get every bug report’s vector space presentation by
computing every items weight.

4.2 Term Frequency–Inverse Document Frequency

Though there are some extensive research on text feature extraction. As regards bug
report, we mainly extract two main features. The first is key words, as we just put it in

bug reports

word segmentation

abstract thesaurus

feature selection

vector space model

t1,t2,t3,…,tn

preprocessing of
bug reports

Fig. 2. Bug reports classification process

A Novel Bug Report Extraction Approach 775

Sect. 3. Then, it is obvious that the core words should be selected as features. While, we
try to use some more objective methods. We compute term frequency–inverse document
frequency (tf-idf), which is a value evaluate a word whether or not having key position
in the total texts, and this value comprise two independent values term frequency and
document frequency. Term frequency in bug reports corpus can be defined as

(4)

Document frequency in bug reports corpus can be defined as

(5)

In our opinion, the higher document frequency, the more value in the specific bug
reports. On the other hand, it is possible that the lower document frequency includes
more information, in other words, it is should be preserved in bug reports extraction.
Consequently, in regard of the above analysis, tf-idf is trade-off.

tf-idf is the multiple of tf and idf, in other words,

(6)

Therefore, for instance, there are 20458 words in the corpus in our experiment.
‘Problem’ appeared 73 times total. There are total 36 bug reports. And ‘problem’
appeared in 35 bug reports. Therefore, the term frequency is 0.003568, and document
frequency is -0.02817. From above, we can compute the term frequency–inverse docu‐
ment frequency of ‘problem’ is −1.005 .

4.3 Chi-Squared Test

Besides term frequency–inverse document frequency, we try to introduce chi-squared
test (test) into bug reports core words features extraction. To be precise, test in
debug reports show the relevance of one specific and the extraction from debug reports.

(7)

T is the total bug reports in corpus. A is the number of extraction including specific word
m. B is the number of exclude extraction including specific word m. C is the number of
extraction not including specific word m. D is the number of exclude extraction not
including specific word m. Obviously, when feature m and extraction are
independent from each other. On the other hand, the larger , the more possibility
including the word m in extraction. We use the ‘problem’ as example. We suppose every
sentence as a dependent text. In the corpus as the experiment, there are total N = 2361
sentences in bug reports. There are 49 sentences including ‘problem’ (A = 59) in extrac‐
tion. There are 24 sentences including ‘problem’ not in extraction (B = 14). There are

776 T. Lin et al.

465 sentences in extraction, in which there are C = 406 sentences not including
‘problem’. D equals 1882, which means there are 1882 sentences not including
‘problem’ not in extraction. Therefore the ‘problem’ of .

In bug reports, test hold attention on the relation specific words between the
extractions of bug reports.

4.4 Information Gain

The third indicator to determine a word whether or not being selected as core words is
the value of information gain, which means the specific words have how much infor‐
mation quality.

(8)

Information gain can note specific words bring how much information to the bug
reports extraction. The more information, the more vital to the specific words in extrac‐
tion. In bug reports extraction, information gain of every words is computed, throwing
the words, which is lower the specific threshold. By this we mean that it is the words
above the threshold can be regarded as features.

4.5 Sentence Complication

The other features is sentence complication. As we investigated, the higher complication
sentence include much more crucial information than simple sentences, especially some
sentences in the bug report only have one to three words, therefore, sentences bearing
this characteristic should be excluded from the extraction. Take coups in our experiment
for example. Some sentences, like ‘Good point.’, ‘But go ahead’, and ‘How does it
sound?’ being little message, it is eligible not in extraction.

5 Experiment

In this paper, we use the Sarah Rastkar et al’ bug report corpus.1 One of a good reason
to use this corps is that there is an annotation for this bug reports. By this we can train
a naïve Bayes classifier based on Python Textblob.2 It is the convention that we need to
compute true positive rate and false positive rate to plot receiver operator characteristic
curve, ROC and compute the Area-under-the-ROC curve, AUC.

1 www.cs.ubc.ca/cs-research/software-practices-lab/projects/summarizing-software-artifacts,
verified 2015/09/04.

2 http://textblob.readthedocs.org/en/dev/, verified 2015/09/04.

A Novel Bug Report Extraction Approach 777

http://www.cs.ubc.ca/cs-research/software-practices-lab/projects/summarizing-software-artifacts
http://textblob.readthedocs.org/en/dev/

6 Receiver Operator Characteristic Curve

First, we need to compute true positive rate.

(9)

Then, we have to calculate false positive rate.

(10)

At last, we can plot the ROC as shown in Fig. 3, and compute AUC.

Fig. 3. ROC for Bayes classifiers

According to ROC, Area-under-the-ROC curve is 0.711, which is competitive to
support vector machine, while Bayes classifier is much more less dimensionality

6.1 F-Score

We further analyses the effectiveness of our Bayer classifier by compute some standard
value, namely, precision, recall, and F-score.

In fact, the value of recall equals true positive rate.
Because we cannot guarantee the two value both high, so it is common to use F-score

to determine the quality of classifiers.

778 T. Lin et al.

There are some problem hard to solve to increase F-score value, for the inherent
factors of natural language, such as the idea of modification, revocation. For example,
one of developers in corpus said: “Once I started messing around with what is ticked,
the problem went away.” But later, he made supplementary: “Now I am also unable to
reproduce it.” These two examples are typical contradiction presentation in natural
language. However, neither support vector machine classifier nor naïve Bayes classifier
can make wise and right decision on this situation. As far as we are concerned, on the
one hand, it is a necessity to conduct much more research on classifier. On the other
hand, it is requisite that establish some essential standard in bug reports on the condition
that not to confine developers creative idea and effective team cooperation.

7 Summary

Developers need excellent bug reports to enhance software development. However,
there is little and no research in this area until now, except some complicated methods
using support vector machine.

In this paper, may be initiated, we present a simple, but effective Bayes classifier,
which is competitive to support vector machine classifier. One of main threats in this
research is the corpus which we selected as experiment. To be precise, the corpus is not
large enough, the annotation in the corpus is subjective, rather than objective. In other
words, it is not easy to compare any bug reports classifier whether or not effectiveness in
an objective standard. In the future work, it is one of our main target to setup a relative
large enough software bug reports corpus. In addition, the bug reports in the corpus
coming from Eclipse Platform, Gnome, Mozilla and KDE, which all are part of open-
source software projects. By this we mean that we wonder how our classifier’s effective‐
ness in commercial environment. However, this defect scarcely to solve straightforward,
for almost all commercial software bug reports are confidential.

There are two main areas which need further research. The first is that we intend to
design an automatic feature abstract classifier to eliminate thesaurus specifically for bug
reports. Besides, there is possible more advantages if combining various classifiers to
extract the bug reports, for instance, Bayes classifier and Decision Tree combination.

Acknowledgments. This work was supported by the National Science Foundation of China, No.
61073163, and Enterprise Innovation Special Fund of Shanghai Municipal Commisiion of
Economy and Informatization, China, No. CXY-2013-88.

References

1. Goyal, P., Behera, L., McGinnity, T.M.: A context-based word indexing model for document
summarization. IEEE Trans. Knowl. Data Eng. 25, 1693 (2013)

2. Mills, M.T., Bourbakis, N.G.: Graph-based methods for natural language processing and
understanding—a survey and analysis. IEEE Trans. Syst. Man, Cybern. Syst. 44, 59 (2014)

3. Bertram, D., Greenberg A.V.S.: Communication, collaboration, and bugs: the social nature of
issue tracking in small, collocated teams. In: Proceedings of the ACM Conference on Computer
Supported Cooperative Work (CSCW 2010), vol. 291 (2010)

A Novel Bug Report Extraction Approach 779

4. Alenezi, M., Banitaan, S.: Bug reports prioritization: which features and classifier to use? In:
12th International Conference on Machine Learning and Applications (ICMLA), vol. 2, p. 112,
Miami, FL (2013)

5. Kastner, C., Dreiling, A., Ostermann, K.: Variability mining: consistent semi-automatic
detection of product-line features. IEEE Transactions on Software Engineering 40, 67 (2014)

6. Rastkar S., Murphy G.C., Murray G.: Automatic Summarization of Bug Reports. IEEE
Transactions on Software Engineering. 40. 366 (2014)

7. Sangno, L., Baker, J., Song, J., Wetherbe, J.C.: An empirical comparison of four text mining
methods. In: 43rd Hawaii International Conference on System Sciences (HICSS), vol. 1,
Honolulu, HI (2010)

8. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun.
ACM 18, 613–614 (1975)

780 T. Lin et al.

	A Novel Bug Report Extraction Approach
	Abstract
	1 Introduction
	2 The Reason to Choose Naive Bayes Classifier
	3 Abstract Thesaurus
	4 Bug Reports Features
	4.1 Vector Space Model
	4.2 Term Frequency–Inverse Document Frequency
	4.3 Chi-Squared Test
	4.4 Information Gain
	4.5 Sentence Complication

	5 Experiment
	6 Receiver Operator Characteristic Curve
	6.1 F-Score

	7 Summary
	References

